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What is Circuitscape?

I Circuitscape borrows
algorithms from electronic
circuit theory to estimate
connectivity in
heterogeneous landscapes.

I Applications in movement
ecology, climate
connectivity,
epidemiology, and many
other areas.
(circuitscape.org/
applications/)

Figure 1: Niche models and
Circuitscape connectivity [Lawler et
al 2013]
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Why does it work?

Based on two fundamental ideas:

I Landscapes are large (but simple) weighted graphs [Urban and
Keitt 2001]

I Effective resistance is a measure of ecological distance
[Isolation by Resistance, McRae 2006]
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How does it work?

Main stages of simulation:

1. Construct graph representation of landscape. Take m × n
raster map, generate mn ×mn sparse matrix.

2. Compute its graph laplacian G .

3. Set input sources I (comes from focal node file).

4. Solve Ohm’s Law:
GV = I

Need to solve a large sparse linear system.
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Numerics - Direct Methods

I Direct methods: Construct a sparse cholesky factorization
G = LL∗, where L is lower triangular. [Chen, Davis et al
2008]. Works well for small problems (∼ max 12M)

I Limitation: At large sizes, suffers from a phenomenon called
fill-in. Results in loss of sparsity and spike in memory
consumption.

When do I use this?
Small problem (∼ 12M or less), a lot of pairs.
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Numerics - Iterative Methods

So how do you solve large matrices (∼ 100M+)?
You come up with a series of approximations, which hopefully
converge to the solution.

Analyze matrix properties

The matrices in Circuitscape are often referred to as laplacian
systems: they are symmetric (A = A∗) and positive semi-definite
(Eigenvalues ≥ 0).

Choose best method
The conjugate gradient method is generally considered the right
method for this problem.

But, iterative methods only guarantee convergence in n steps!
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Preconditioners

We can’t afford a million iterations (or even thousands).

To accelerate convergence, we use a preconditioner.

Algebraic Multigrid

Come up with a hierarchy of smaller graphs that approximate our
landscape graph.

Figure 2: Source: SIAM News
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Computational Challenges

I Scalability: Processing large datasets at fine resolution
(NASA datasets, climate datasets).

I Extensibility: Compose with other tools and Circuitscape
extensions (Omniscape, Wall-to-Wall). Can switch out and
experiment with different solvers.
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Upgrade to the Julia programming language

I Easy to use: Interactive, feels like a scripting language like
Python/R with high level syntax

I Fast: Designed from from the very beginning to be fast.



Benchmarks



User Testimonials

“Even in CG+AMG solver mode, this problem takes only 35 hours
in Julia compared to 8 days with original Circuitscape.”
“The CHOLMOD solver mode is a full order of magnitude faster
than the original Circuitscape, which took at least 8 days to run.”
- Dr. Megan Jennings, San Diego State University.

“In python, the problem took 36 minutes but in Julia this problem
solved in under 3 minutes.”
“We were able to solve massive problems (of size 437 million) in
Julia, but the older version crashed”.
- Dr. Miranda Gray, Conservation Science Partners.
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User Data Tests

I Joseph Drake (UMass) - All to One :
56 hours on the old version.
3 hours on the new version

I Open to more user case studies!



Our core contribution

I Faster - upto 8x faster than the previous version

I New solver – Performs cholesky decomposition on the
underlying graph

I Parallelism on Windows (and Linux and MacOS) Earlier
version didn’t support parallelism on Windows

I Single precision support (experimental)
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Our core contribution

I Scalable Parallelism: While solving multiple source/sink
pairs in parallel, we can serialize the preconditioner and send
to other processes. And, we can now call Circuitscape itself in
parallel!

I Generic Software: We support arbitrary precision and
indexing(Float32 vs Float64 computation). Rely on the
compiler to generate optimal code.

I Composability: We be able to try different solvers and
preconditioners and have them compose well with the core
simulation.
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Future Work

I Extensions: Wall to Wall, Omniscape - important for climate
connectivity.

I Resistance surface creation and improvement

I Composability with other models

I Improvements in numerics
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Figure 3: In honor of Brad McRae (1966-2017)
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Thank You!

I Website: https://circuitscape.org

I Project Website:
https://github.com/Circuitscape/Circuitscape.jl

I Google Group: Long url, just google search for it.

https://circuitscape.org
https://github.com/Circuitscape/Circuitscape.jl

